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A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally
different approach to MRI which is particularly well suited to imaging objects with extremely fast spin–
spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous
signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation
pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent
on producing uniform and broadband spin excitation. These requirements are satisfied by using fre-
quency-modulated pulses belonging to the hyperbolic secant family (HSn pulses). This article describes
the experimental steps needed to properly implement HSn pulses in SWIFT. In addition, properties of
HSn pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after
inserting the ‘‘gaps” needed for time-shared excitation and acquisition. Finally, compact expressions are
presented to estimate the amplitude and flip angle of the HSn pulses, as well as the relative energy depos-
ited by the SWIFT sequence.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Advanced digital electronics of modern NMR instruments, com-
bined with their flexible programming capabilities, have led to
unprecedented sophistication in NMR experimentation. In particu-
lar, the capabilities provided by waveform synthesis have allowed
re-evaluation of ideas and techniques from the past, many of
which have been essentially forgotten. One example is the recently
described MRI method called SWIFT (SWeep Imaging with Fourier
Transformation) [1]. SWIFT is a close relative of the classical exper-
iment called rapid scan correlation spectroscopy [2,3]. SWIFT uses
swept radiofrequency (RF) excitation and virtually simultaneous
signal acquisition in a time-shared mode, which allows imaging
of objects with ultra fast spin–spin relaxation rates. In SWIFT as
in rapid scan correlation spectroscopy, correlation of the spin sys-
tem response with the excitation pulse function is used to extract
useful signal.

High quality images can be produced with SWIFT only when the
excitation is uniform over a bandwidth equal to the image acquisi-
tion bandwidth [1]. Certain types of frequency-modulated (FM)
pulses that function according to adiabatic principles offer the
capability to produce a broadband and flat excitation profile with
low RF amplitude ðB1Þ [4,5]. Most FM pulses have been created
for the purpose of inverting magnetization (i.e., adiabatic full pas-
sage (AFP)), but these same pulses can be used to excite lower flip
angles, while retaining essentially the same shape of the fre-
ll rights reserved.

llin).
quency-response profile. In contrast to adiabatic inversion, accom-
plishing excitation with lower flip angles requires either
decreasing B1 or increasing the rate at which the time-dependent
pulse frequency xRFðtÞ is swept [6]. In doing so, the operating point
is changed from the adiabatic region to the region known as the ra-
pid passage, linear region, which satisfies the conditions:

aT2
2 � 1 ð1aÞ

and

a� ðx1=2pÞ2; ð1bÞ

where a is the frequency acceleration in Hertz per second (i.e.,
a ¼ ðdxRF=dtÞ=2pÞ, T2 is spin–spin relaxation time in units of sec-
onds, and x1 is the amplitude of RF field in angular frequency units
(i.e., x1 ¼ cB1, where c is the gyromagnetic ratio).

Unlike rapid scan correlation spectroscopy, SWIFT does not
have restrictions on the shape of the RF sweep function [1], and
therefore, many different kinds of FM pulses can be used for this
application. In SWIFT experiments to date, we have exploited FM
pulses belonging to a class of hyperbolic secant pulses known as
HSn pulses [7]. In this work, properties of HSn pulses in the rapid
passage, linear region are investigated, followed by a further anal-
ysis of the pulses after inserting the ‘‘gaps” needed for time-
shared excitation and acquisition in SWIFT. With the aid of Bloch
simulations, a compact expression is obtained which allows the
flip angle produced by HSn pulses to be predicted analytically
and provides a tool to estimate RF energy, peak amplitude, and
relative specific absorption rate (SAR) for the entire SWIFT
sequence.
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Fig. 1. The dependency of excitation bandwidth on the flip angle for HS1 and chirp
pulses with R ¼ 256 and for a square pulse. For HS1 and chirp pulses bw;theory ¼ A=p
and for the square pulse bw;theory ¼ 1=Tp. The bandwidth dependence is displayed as
the ratio between the Bloch simulations calculated bandwidth needed to achieve
95% maximal excitation and the theoretical values from linear systems
considerations.

268 D. Idiyatullin et al. / Journal of Magnetic Resonance 193 (2008) 267–273
2. Frequency-modulated pulses of the HSn family

Frequency-modulated HSn pulses were originally developed [7]
for the purpose of accomplishing adiabatic inversion (i.e., AFP
pulses) with reduced peak amplitude relative to the well known
hyperbolic secant (HS) pulse [8]. The RF driving function fnðtÞ
was chosen to be a modified HS function,

fnðtÞ ¼ sechðbð2t=Tp � 1ÞnÞ; ð2Þ

where n is a dimensionless shape factor (typically n P 1Þ, b is a
dimensionless truncation factor (usually b � 5:3Þ, and Tp is the pulse
length (i.e., 0 6 t 6 TpÞ. The dimensionless relative integral IðnÞ and
relative power PðnÞ of the driving function (Eq. (2)) can be obtained,
but do not have known analytic closed form expressions when
n > 1. For convenience, here approximations will be used which for
b P 3 and n P 1 have 3% or better accuracy, such that:

IðnÞ ¼ 2
Tp

Z Tp

0
fnðsÞds �

p
2b

� �1=n

ð3aÞ

PðnÞ ¼ 2
Tp

Z Tp

0
f 2
n ðsÞds �

1
b

� �1=n

: ð3bÞ

For n!1 the function fnðtÞ becomes a rectangle which describes
the shape of chirp and square pulses with corresponding parame-
ters equal to one, i.e., I ¼ P ¼ 1.

In the case of HSn pulses, the time-dependent RF amplitude and
angular frequency can be written as,

x1ðtÞ ¼ x1 maxfnðtÞ; ð4aÞ

xRFðtÞ ¼ xc þ 2A

R t
0 f 2

n ðsÞdsR Tp

0 f 2
n ðsÞds

� 1
2

 !
; ð4bÞ

respectively, where x1 max ¼ cB1max, xc is the angular carrier fre-
quency, and A is the amplitude of the frequency modulation. Most
modern NMR instruments execute FM pulses by modulating the
pulse phase, rather than frequency, according to the function,1

/ðtÞ ¼
Z t

0
ðxRFðsÞ �xcÞds: ð5Þ

With amplitude and phase modulation, the FM pulse is described by
the function

xðtÞ ¼ x1ðtÞe�j/ðtÞ: ð6Þ
3. The excitation profile of HSn pulses

By analyzing the vector motions in a rotating frame of reference
[4], the excitation bandwidth produced by an HSn pulse can be
understood in terms of a frequency-swept excitation
ð�A 6 ðxRFðtÞ �xcÞ 6 AÞ. Accordingly, the HSn pulse bandwidth
(in Hz) is theoretically given by bw ¼ A=p. With uniform energy
distribution inside the baseband [7,9], the frequency-response pro-
file of the HSn pulse is highly rectangular in shape, with edges
becoming sharper with an increasing time-bandwidth product,
R ¼ ATp=p [10].

An appreciation of the features of HSn pulses can be readily ob-
tained by performing Bloch simulations. Fig. 1 shows simulated
data using HS1 and chirp pulses ðR ¼ 256Þ, and for comparison,
the data obtained with a simple square pulse are also shown. Bloch
simulations were used to find the bandwidth bw;95 for which at
least 95% of the maximal excitation was achieved [11]. In Fig. 1,
bw;95 is plotted as a function of flip angle h, after normalizing by
bw;theory, which is defined as the full-width half-maximum band-
1 Note, the integral was mistakenly omitted in [1].
width predicted from linear theory. In other words, bw;theory ¼ A=p
for HSn pulses and bw;theory ¼ 1=Tp for a square pulse. In Fig. 1 it
can be seen that the HS1 and chirp bandwidth is well approxi-
mated by the relationship bw � A=p ¼ R=Tp, for all flip angles
(i.e., bw;95=bw;theory � 1). In comparison, the excitation bandwidth
produced by a square pulse is highly dependent on the choice of
flip angle. In the small flip angle region, the bandwidth of the
square pulse, as predicted from Fourier analysis under estimates
bw;95 by about a factor of three. Thus, to make a proper comparison
with HSn pulses, the square pulse used in the following analysis
will have a pulse length Tp ¼ 1=ð3bwÞ, so that it effectively excites
the same required bandwidth ðbw;95Þ as the HSn pulse.

4. Characteristics of HSn pulses in the rapid passage, linear
region

In the linear region, the flip angle produced by an HSn pulse is a
linear function of the RF field strength. The RF field strength ex-
pressed in terms of the spectral density at the center frequency
ðj0Þ is

j0 ¼
Z Tp

0
xðtÞdt

����
����: ð7Þ

When using amplitude-modulated (AM) pulses without frequency
or phase modulation (e.g., a sinc pulse), j0 is a linear function of
Tp according to Eq. (7). Alternatively, with frequency-swept pulses
j0 can be a non-linear function of Tp, due to the flexibility provided
by the additional parameter, R. For example, with a chirp pulse j0 is
inversely proportional to the square root of the frequency accelera-
tion [12]:

j0 / 1=
ffiffiffi
a
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpTpÞ=A

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tp=bw

q
: ð8Þ

As members of the same FM pulse family, HSn pulses are expected
to exhibit similar j0-dependency on a, although with slight differ-
ences due to their altered shapes. As shown in Fig. 2, results from
Bloch simulations demonstrate how HSn pulses follow these expec-
tations. In Fig. 2, the simulated flip angles ðhÞ obtained with differ-
ent settings of the pulse parameters (n, b, Tp, and bwÞ are plotted on
the ordinate, while the predicted flip angles ðh0Þ based on the ana-
lytical approximation,

h0 ¼ x1 maxb
�1=2n

ffiffiffiffiffiffi
Tp

bw

s
� j0; ð9aÞ



Fig. 2. Flip angles simulated for five HSn pulses with different parameters in the
range of changing x1 max values from 300 to 39,000 rad/s. The different symbols
represent different set of parameters n, b R, and Tp, which are, respectively: 1, 7.6,
256, 3 ms (square), 1, 2.99, 256, 3 ms (circle), 1, 5.3 256, 1 ms (up triangle), 1, 5.3
256, 3 ms (down triangle), 8, 5.3, 256, 1 ms (diamond), and chirp with R ¼ 256 and
Tp = 2.56 ms (cross). The line represents Eqs. (9a)–(9c).
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are plotted on the abscissa. Here b�1=2n describes the shape factor,
which according to Eq. (3) is related to both the relative integral
and power of the pulse as b�1=2n � p

2

� ��1=2n ffiffiffiffiffiffiffiffi
IðnÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
PðnÞ

p
and is

equal to 1 in the case of chirp. The approximation h � h0 holds for
flip angles up to p=2 with an accuracy of about 3%.

Alternative equations to approximate the flip angle are

h0 ¼ x1 maxb
�1=2n Tpffiffiffi

R
p � h ð9bÞ

and

h0 ¼ x1 maxb
�1=2n

ffiffiffi
R
p

bw
� h: ð9cÞ

Based on the application, a different choice of dependent versus
independent parameters can be made, leading to a requirement
for using Eqs. (12), (13) or (14). Many MRI systems implement
pulses as a ‘‘shape file” requiring fixed R value with the constraint
of Eq. (9b) or (9c).

For comparison with the HSn pulses, one can consider a square
pulse having approximately the same excitation bandwidth bw. As
described above, when requiring the magnitude of excited magne-
tization at the edges of the frequency-response profile [11] to be at
least 95% of maximum, the pulse length in the linear region must
be about 1

3bw
(see Fig. 1). The flip angle of such a square pulse with

peak amplitude x1 max is equal to

hsquare ¼
x1 max

3bw
: ð10Þ

The peak amplitudes needed for excitation to a flip angle h using
HSn and square pulses are

xHSn
1 max � hb1=2n

ffiffiffiffiffiffi
bw

Tp

s
¼ hb1=2n bwffiffiffi

R
p ð11Þ

and

xsquare
1max � 3bwh; ð12Þ

respectively. In contrast to the square pulse, HSn pulses can produce
the same h and bw values with different settings of the peak RF
amplitude, xHSn

1 max. The relative peak amplitude required by the
square and HSn pulses is given by the ratio,

xsquare
1max

xHSn
1 max

� 3b�1=2n
ffiffiffi
R
p

; ð13Þ
which can reach large values, depending on the R value. For exam-
ple, the HS8 pulse with R ¼ 512 and b ¼ 5:3 has 61 times less peak
amplitude than a square pulse exciting the same bandwidth at the
same flip angle.

The relative energy, J, radiated by any RF pulse is proportional to
the power and duration of the pulse. For an HSn pulse the energy
is:

JHSn ¼ ðx1 maxÞ2PðnÞTp � b1=2nh

ffiffiffiffiffiffi
bw

Tp

s !2
Tpffiffiffi
bn
p ¼ h2bw ð14Þ

and accordingly for a square pulse:

Jsquare ¼ ð3bwhÞ2Tp ¼ 3h2bw: ð15Þ

Thus, the radiated RF energy of an HSn pulse is not dependent on n,
peak amplitude, or pulse length, and is at least 3 times less than the
energy radiated by a square pulse exciting the same bandwidth at
the same flip angle.
5. Generating shaped pulses

To generate a shaped frequency-modulated pulse, the modern
NMR spectrometer uses a discrete representation of the pulse with
a finite number of pulse elements. One question is, how big must
the total number of pulse elements ðNtotÞ be for proper representa-
tion of the pulse? Mathematically such pulse, x0ðtÞ, can be repre-
sented as the multiplication of the continuous RF pulse function,
xðtÞ, by a comb function of spacing Dt ðDt ¼ Tp=NtotÞ, and convolv-
ing the result with a rectangle function having the same width Dt
[13]:

x0ðtÞ ¼ ½xðtÞcombðt=DtÞ� � rectðt=DtÞ; ð16Þ

where � is the convolution operation and the comb function is as
defined in [14]. The Fourier Transform of x0ðtÞ represents the ‘‘low
flip angle” excitation profile [15] of the discretized pulse in a fre-
quency ðmÞ domain,

X0ðmÞ ¼ B½XðmÞ � combðmDtÞ�sincðmDtÞ; ð17Þ

where B ¼ Dt2 is a scaling factor which will be neglected below for
simplicity.

Thus, discretization creates an infinite number of sidebands
having the same bandwidth bw, centered at frequencies k=Dt where
k is an integer. The entire excitation spectrum is weighted by the
envelope function, sincðmDtÞ ¼ sinðmpDtÞ

mpDt . The Nyquist condition for a
discretized excitation determines that the sidebands are not ali-
ased when

1=Dt P bw: ð18Þ

This in turn determines the minimum number of pulse elements
needed to satisfy the Nyquist condition, NNyquist, which depends
on R according to:

NNyquist ¼
Tp

Dt
¼ R

bwDt
¼ R: ð19Þ

If the number of pulse elements satisfies the Nyquist condition,
then the baseband ð�bw=2 6 m 6 bw=2Þ can be described by

X0mainðmÞ ¼ XðmÞsincðmDtÞ: ð20Þ

To reduce the attenuation by sincðmDtÞ, the length of Dt can be de-
creased (i.e., the pulse can be oversampled). The parameter used to
characterize the level of pulse oversampling is

Lover ¼
Ntot

NNyquist
¼ Ntot

R
: ð21Þ



Fig. 4. Shaped pulse with gaps for acquisition in the SWIFT sequence (a) and
detailed structure of the pulse with different pulse oversampling levels, Lover ¼ 2 (b)
and Lover ¼ 6 (c). In both examples the duty cycle, dc is equal to 0.5.
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To meet the requirement that the pulse has at least 95% maximum
excitation at the edges of the baseband, Lover must be at least 3,
which is similar in form to the constraint in square pulse excitation.
In practice it is desirable to use an even larger oversampling level.

The different components of Eq. (17) are presented graphically
in Fig. 3 for two different pulse oversampling levels, Lover ¼ 1
(Fig. 2a–c) and Lover ¼ 8 (Fig. 3f–h). With Lover ¼ 1 the resulting
excitation spectrum has its first discretization sidebands located
immediately adjacent to the baseband (Fig. 3c), and for Lover ¼ 8
the first sidebands are pushed outward to center on frequencies
�8bw (Fig. 3h).

6. Time-shared acquisition in gapped HSn pulses

In SWIFT the transmitter is repeatedly turned on and off (every
dw interval) to enable sampling ‘‘during” the pulse. Such full
amplitude modulation of the excitation pulse creates modulation
sidebands which have to be considered. If the ‘‘transmitter on”
time is labeled as sp, then the time with the ‘‘transmitter off” is
equal to dw� sp. The pulse is divided into a number of segments
ðNsegÞ each of duration dw, and the total number of sampling points
ðNsampÞ is a multiple of Nseg:

Nsamp ¼ NsegSover; ð22Þ

where Sover is the integer describing the acquisition oversam-
pling. In general, the parameter Nseg is not dependent on Ntot

with only one obvious restriction, Ntot P 2Nseg. The timing of
the gapped HSn pulse as used in SWIFT is presented in
Fig. 4a. In the inserts, the detailed structure of the pulse with
different pulse oversampling levels (Lover ¼ 2 (Fig. 4b) and
Lover ¼ 6 (Fig. 4c)) is shown. In both examples the pulses have
a duty cycle dc ¼ sp

dw equal to 0.5.
There are different ways to create such segmented pulses based

on the same parent pulse (Eq. (6)). One way is to introduce delays
with zero amplitudes into the parent pulse (DANTE type) [10] and
another involves zeroing pulse elements in the parent pulse (gap-
ped pulse). According to Bloch simulations, the excitation profile of
Fig. 3. Graphical presentation of the components of Eq. (17) (a–c and f–h) and Eq. (24) (d,
j). In the case of the gapped pulse (d, e, i, and j), the duty cycle, dc is equal to 0.5.
pulses created in these two different ways are the same for
R 6 Nseg=2. For the same pulse length and duty cycle, the gapped
pulse shows better behavior (flatter excitation profile) up to the
maximum usable R value, which is R ¼ Nseg (Eq. (19)). For this rea-
son, only gapped pulses are considered here.

Mathematically the gapped pulse can be described as:

x0gapðtÞ ¼ x0ðtÞðcombðt=dwÞ � rectðt=spÞÞ: ð23Þ

The Fourier Transform of x0gapðtÞ represents the ‘‘low flip angle” exci-
tation profile [15] of the gapped pulse:

X0gapðmÞ ¼ X0ðmÞ � ½combðmdwÞsincðmspÞ�: ð24Þ

The different components of this equation are presented graphically
in Fig. 3 for two different levels of pulse oversampling, Lover. Decreas-
e, i, and j) for two different pulse oversampling levels Lover ¼ 1 (a–e) and Lover ¼ 8 (f–



Fig. 5. Simulated profiles of the baseband for a gapped HS1 pulse (dc is equal to 0.5)
with two different oversampling levels and for a square pulse of 1

3bw
duration (a).

Zoomed in plots of the top of the baseband are shown in (b).
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ing Dt pushes the sidebands farther from the baseband, but convolu-
tion with function combðmdwÞsincðmspÞ brings the sidebands back
with amplitudes weighted by sincðmdcÞ, where m is the sideband or-
der. As a result of this convolution, the baseband’s profile is changed
by sideband contamination. Fig. 5 shows profiles of the baseband pro-
duced by gapped pulses with two different oversampling levels. Side-
band contamination destroys the flatness of the profile, especially at
the edges of the baseband. Increasing the level of pulse oversampling
Table 1
Properties of gapped HSn and square pulses

Parameter Gapp

RF driving function, fnðtÞ sechð

Relative RF integral, IðnÞ 2dc
Tp

R
0

Relative RF power, PðnÞ 2dc
Tp

R
0

Total pulse length, Tp (s) R
bw

Amplitude modulation function, x1ðtÞ x1 ma

Frequency modulation function, xRFðtÞ (rad/s) xc þ

Flip angle, h (rad) � x1

Peak RF amplitude, x1 max (rad/s) � b1=

dc
p

Relative RF energy, J (rad2/s) � 1
dc

h

Relative RF energy (Ernst angle), J (rad2/s) � 2TR
T1

Relative SAR (Ernst angle), SAR (rad2/s2) � 2b
T1d

Relative amplitudes of sidebands, Am � sin
helps to decrease or eliminate this effect. This effect becomes negligi-
ble with Lover P 16, at which point the baseband and sideband pro-
files become flat with amplitudes equal to:

Am ¼ sincðmdcÞ: ð25Þ

As the duty cycle decreases ðdc ! 0Þ, the amplitude of sidebands ap-
proaches the amplitude of the baseband, whereas the sidebands
disappear as dc ! 1.

7. Characteristics of gapped HSn pulses

The insertion of gaps in an HSn pulse does not change the base-
band excitation bandwidth but decreases the flip angle proportion-
ally to the duty cycle. To make the same flip angle, the peak
amplitude of the pulse has to be increased, and the resulting en-
ergy of the pulse increases by 1

dc
. Formulas accounting for the duty

cycle are given in Table 1.
Consider the RF energy deposition during an optimized SWIFT

sequence. The maximum signal/noise (S/N) ratio is reached when
the flip angle is adjusted to the ‘‘Ernst angle” ðhEÞ, which is equal
to hE ¼ arccosðe�TR=T1 Þ, where TR is repetition time and T1 is longi-
tudinal relaxation time [16]. An approximation for the Ernst angle
in rapid NMR sequences (TR=T1 < 0:1Þ is:

hE �

ffiffiffiffiffiffiffiffi
2TR

T1

s
: ð26Þ

In this case, the relative energy deposition according to Eq. (14) is
equal to:

JHSn �
2TRbw

T1dc
; ð27Þ

and the relative SAR for the HSn pulses is:

SARHSn �
2bw

T1dc
; ð28Þ

and for a square pulse is:

SARsquare �
6bw

T1
: ð29Þ

Thus, the energy and SAR of a gapped HSn pulse at the Ernst angle is
independent of pulse length, R value, and the specific pulse shape
(n), and is linearly proportional to pulse baseband width. As com-
pared with a square pulse producing the same bandwidth ðbw;95Þ,
ed HSn pulses (dc-duty cycle) Square pulse

bð2t=Tp � 1ÞnÞ Constant

Tp fnðsÞds � dc
p
2b

� �1=n

1

Tp f 2
n ðsÞds � dc

1
b

� �1=n

1

1
3bw

xfnðtÞ½combðbwtÞ � rectðbwdctÞ� x1 maxrectðt=TpÞ

2A
R t

0 f 2
n ðsÞdsR Tp

0 f 2
n ðsÞds

� 1
2

 !
Constant

maxdcb
-1=2n

ffiffiffi
R
p

bw
� x1 max

3bw
2nffiffiffi
R

hbw � 3hbw

2bw � 3h2bw

bw
dc

� 6TRbw
T1

w
c

� 6bw
T1

cðmdcÞ —
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HSn pulses have reduced SAR when the duty cycle ðdcÞ is large and
greater SAR when dc < 0:33.

It is worth mentioning that in general, with decreasing pulse
duty cycle, the S/N increases together with the SAR, which under
certain circumstances means that a compromise in the choice of
‘‘optimum” duty cycle must be made. A full analysis of the S/N
dependency on duty cycle is beyond the scope of this paper.

8. Avoidable and unavoidable digitization artifacts in the SWIFT
method

In SWIFT useful signal is extracted by correlation of the spin
system response with the pulse function. Any misrepresentation
of the pulse function will result in a systematic error in the result-
ing spectrum. Such a systematic error in radial imaging shows up
in the reconstructed image as a ‘‘bullseye” artifact. To avoid such
artifacts, the pulse function used for correlation must be as faithful
as possible to the physical pulse transmitted by the RF coil. Some
errors can be predicted and neutralized on a software level:

1. Gapping effects. For correlation, instead of the theoretical func-
tion, xðtÞ, the discretized function x0gapðtÞ, must be used.

2. Digitization. The function, x0gapðtÞ, must be rounded in same way
as is done by software and hardware.

3. Timing errors. To avoid temporal rounding error the pulse ele-
ment duration Dt must be equal to or be a multiple of the min-
imum time step (temporal resolution) of the waveform
generator.
Fig. 6. Selected slices of 3D SWIFT images (a–c) and their profiles (d–f) (horizontal,
through center) of a water phantom acquired using HS1 pulse ðR ¼ 256;dc ¼ 0:375)
with three different levels of pulse oversampling, Lover ¼ 2 (a and d), Lover ¼ 4 (b and
e) and Lover ¼ 16 (c and f). Other parameters: diameter of FOV ¼ 3 cm,
bw ¼ 62:5 kHz, sp ¼ 6 ls, h � 44	 , TR ¼ 4:1 ms, Nseg ¼ 256 complex points, the total
number of radial spokes 16384 (including positive and negative gradient direction),
0.12 mm isotropic voxel size.
Fig. 5 shows plots of excitation profiles obtained by FT of the
pulse functions. Gapped HSn pulses were defined using the digital
word lengths permitted by the Varian Inova spectrometer (Palo
Alto, CA) used for SWIFT experimentation. Specifically, to create
the pulse function x0gapðtÞ, the amplitude and phase values of the
parent HS1 pulse were rounded to 10 and 9 bit length words,
respectively. The excitation profiles shown in Fig. 5 exhibit high
frequency ‘‘noise” (�0.5% of peak amplitude) which results from
rounding amplitude and phase values. Fortunately, by including
all discretization constraints in the pulse function before correla-
tion, most of this ‘‘noise” contamination can be removed. In our
experience, however, the latter procedure removes most, although
not all effects from pulse imperfections; therefore, better digital
representation of the pulse is desirable. Furthermore, in SWIFT
acquisitions using fast repetition of excitation pulses, the complex
interplay between the ‘‘noisy” profile and the variable recovery of
the longitudinal magnetization might lead to additional image arti-
facts. In this case, correlation will remove only the static part of
this ‘‘noise”, but the remainder will appear as a ‘‘bullseye” artifact
in the resulting image. Fortunately, such artifacts can also be re-
duced during image reconstruction, as will be shown in future pub-
lications. Examples of the effects of pulse imperfections on water
phantom and human head images are shown in Figs. 6 and 7,
respectively. Three-dimensional SWIFT images were reconstructed
from frequency-encoded radial projections using gridding [17]
without any filtering or other corrections. Fig. 6 presents images
and their profiles (horizontal, through the center) of the water
phantom acquired with three different levels of oversampling
Lover = 2, 4, and 16. The differences between images are due only
to the level of pulse oversampling used. The bullseye artifact de-
creases with increasing oversampling of the pulse. A similar effect
is observed in human head images (Fig. 7). Two datasets were sep-
arately acquired corresponding to Lover ¼ 2 (upper images) and
Lover ¼ 32 (bottom images). Selected orthogonal slices are shown.
The upper images show a noticeable bullseye artifact, which is al-
most invisible on the bottom images obtained using the oversam-
pled pulse.
9. Discussion and conclusions

SWIFT is a unique pulse sequence promising to become an
important tool in a number of areas, including imaging tissues
and materials with extremely fast relaxation rates. Realizing
SWIFT’s full potential is currently a challenge, because the tech-
nique requires software and hardware capabilities far exceeding
typical needs. This article analyzes HSn pulses and considers issues
related to their implementation in SWIFT, with particular attention
paid to achieving uniform baseband excitation despite the pres-
ence of gaps in the pulse waveform.

The first part of this article considered the properties of HSn
pulses operated in the rapid passage, linear region. With the aid of
Bloch simulations, a set of compact expressions were obtained
which can be used to calculate the approximate flip angles pro-
duced by an HSn pulse and to estimate critical parameters such
as peak amplitude and relative RF energy deposition. It was shown
that the efficiency of HSn pulses does not depend on the shape fac-
tor (n), pulse length, and peak amplitude. Because a given band-
width can be excited in many different ways, HSn pulses offer a
flexible tool for interrogating spin systems. For example, in a man-
ner similar to that recently demonstrated using AFP pulses [18,19],
it may be possible to alter image contrast by collecting images with
different pulse parameters.

The second part of this article considered theoretical and exper-
imental aspects of time-shared sweep excitation and acquisition in
the SWIFT method. Discretization of pulses and the introduction of



Fig. 7. Selected axial slices of 3D SWIFT images of human brain acquired using HS1 pulse ðR ¼ 256;dc ¼ 0:5Þwith two different levels of pulse oversampling, Lover ¼ 2 (upper
images) and Lover ¼ 32 (bottom images). Other parameters: diameter of FOV= 40 cm, bw ¼ 31 kHz, sp ¼ 16 ls, h � 10	 , TR ¼ 8:5 ms, Nseg ¼ 256 complex points, the total
number of radial spokes 32,000 (including positive and negative gradient direction), 1.6 mm isotropic voxel size and the total acquisition time was 4.5 min.
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gaps in the pulses produce additional sidebands which can con-
taminate and destroy the flatness of the baseband excitation pro-
file, as well as introduce systematic noise in the acquired data. It
was shown that this effect can be minimized by using both pulse
oversampling and using the proper pulse function for correlation
with the response of the spin system.

In conclusion, SWIFT can be implemented on modern NMR
instruments, but the technique demands particular care in the de-
sign and implementation of the FM pulses. Although not discussed
in detail here, further advances in hardware (e.g., improved digital
definition of the RF waveform and increased speed of transceiver
switching) will also benefit the SWIFT technique.
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